首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7212篇
  免费   586篇
  国内免费   518篇
  2023年   87篇
  2022年   108篇
  2021年   417篇
  2020年   253篇
  2019年   323篇
  2018年   282篇
  2017年   245篇
  2016年   317篇
  2015年   434篇
  2014年   533篇
  2013年   551篇
  2012年   662篇
  2011年   562篇
  2010年   332篇
  2009年   352篇
  2008年   381篇
  2007年   304篇
  2006年   284篇
  2005年   210篇
  2004年   219篇
  2003年   216篇
  2002年   139篇
  2001年   139篇
  2000年   128篇
  1999年   144篇
  1998年   86篇
  1997年   68篇
  1996年   81篇
  1995年   71篇
  1994年   62篇
  1993年   31篇
  1992年   62篇
  1991年   43篇
  1990年   40篇
  1989年   22篇
  1988年   24篇
  1987年   29篇
  1986年   17篇
  1985年   34篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
排序方式: 共有8316条查询结果,搜索用时 15 毫秒
71.
To improve the therapeutic effect of rhaponticin (RHA), a folate receptor (FR) targeted RHA conjugate was synthesized by utilizing a hydrophilic peptide spacer linked to folic acid (FA) via a releasable disulfide linker. This water-soluble conjugate was found to retain high affinity for FR-positive cells, and it produced specific, dose-responsive activity in vitro. Treatment of FRHA with a reducing agent indicated that the amino-reactive derivative of RHA would be released spontaneously following disulfide bond reduction within the endosomes. FRHA also proved to be active predominantly specific against FR-positive syngeneic and xenograft models in vivo, and possible curative activity resulted with minimal to moderate toxicity. The FRHA conjugate greatly enhanced the therapeutic effects and reduced the toxicity of RHA. In conclusion, FRHA represents a folate-targeted chemotherapeutic that can produce potent activity against established sc tumors. Hence, this report has a great significance in pharmacology and clinical medicine as well as methodology.  相似文献   
72.
为研究浙江西门岛海洋特别保护区大型底栖动物功能群的变化规律及其与环境因子的关系,作者分别于2010年4月(春季)、11月(秋季),2011年8月(夏季)和2012年2月(冬季)进行了4个航次的大型底栖动物调查,共鉴定出大型底栖动物78种,根据其食性类型划分为浮游生物食者、植食者、肉食者、杂食者、碎屑食者5种功能群.各功能群平均密度从高到低依次为浮游生物食者>肉食者>植食者>碎屑食者>杂食者,平均生物量从高到低依次为浮游生物食者>碎屑食者>肉食者>杂食者>植食者.单因素方差分析结果表明,大型底栖动物各功能群的密度和生物量季节间均无显著性差异.典范对应分析结果表明,影响大型底栖动物功能群的主要环境因子包括温度、溶解氧、溶解态无机磷和表层沉积物的中值粒径,排序轴对功能群-环境关系的贡献率计算结果表明环境变量可以较好地解释功能群的变化情况.  相似文献   
73.
Neurokinin-1 receptor (NK1R) occurs naturally on human glioblastomas. Its activation mediates glioma cell proliferation. However, it is unknown whether NK1R is directly involved in tumor cell migration. In this study, we found human hemokinin-1 (hHK-1), via NK1R, dose-dependently promoted the migration of U-251 and U-87 cells. In addition, we showed that hHK-1 enhanced the activity of MMP-2 and the expression of MMP-2 and MT1-matrix metalloproteinase (MMP), which were responsible for cell migration, because neutralizing the MMPs with antibodies decreased cell migration. The involved mechanisms were then investigated. In U-251, hHK-1 induced significant calcium efflux; phospholipase C inhibitor U-73122 reduced the calcium mobilization, the up-regulation of MMP-2 and MT1-MMP, and the cell migration induced by hHK-1, which meant the migration effect of NK1R was mainly mediated through the Gq-PLC pathway. We further demonstrated that hHK-1 boosted rapid phosphorylation of ERK, JNK, and Akt; inhibition of ERK and Akt effectively reduced MMP-2 induction by hHK-1. Meanwhile, inhibition of ERK, JNK, and Akt reduced the MT1-MMP induction. hHK-1 stimulated significant phosphorylation of p65 and c-JUN in U-251. Reporter gene assays indicated hHK-1 enhanced both AP-1 and NF-κB activity; inhibition of ERK, JNK, and Akt dose-dependently suppressed the NF-κB activity; only the inhibition of ERK significantly suppressed the AP-1 activity. Treatment with specific inhibitors for AP-1 or NF-κB strongly blocked the MMP up-regulation by hHK-1. Taken together, our data suggested NK1R was a potential regulator of human glioma cell migration by the up-regulation of MMP-2 and MT1-MMP.  相似文献   
74.
During passage through the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that renders sperm competent to produce fertilization. Capacitation involves a sequence of changes in biochemical and electrical properties, the onset of a hyperactivated swimming behavior, and development of the ability to undergo successful fusion and penetration with an egg. In mouse sperm, the development of hyperactivated motility is dependent on cytosolic alkalization that then results in an increase in cytosolic Ca2+. The elevation of Ca2+ is thought to be primarily driven by the concerted interplay of two alkalization-activated currents, a K+ current (KSPER) composed of pore-forming subunits encoded by the Kcnu1 gene (also termed Slo3) and a Ca2+ current arising from a family of CATSPER subunits. After deletion of any of four CATSPER subunit genes (CATSPER1–4), the major remaining current in mouse sperm is alkalization-activated KSPER current. After genetic deletion of the Slo3 gene, KSPER current is abolished, but there remains a small voltage-activated K+ current hypothesized to reflect monovalent flux through CATSPER. Here, we address two questions. First, does the residual outward K+ current present in the Slo3 −/− sperm arise from CATSPER? Second, can any additional membrane K+ currents be detected in mouse sperm by patch-clamp methods other than CATSPER and KSPER? Here, using mice bred to lack both SLO3 and CATSPER1 subunits, we show conclusively that the voltage-activated outward current present in Slo3 −/− sperm is abolished when CATSPER is also deleted. Any leak currents that may play a role in setting the resting membrane potential in noncapacitated sperm are likely smaller than the pipette leak current and thus cannot be resolved within the limitation of the patch-clamp technique. Together, KSPER and CATSPER appear to be the sole ion channels present in mouse sperm that regulate membrane potential and Ca2+ influx in response to alkalization.  相似文献   
75.
76.
77.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
78.
Presenilin-associated protein (PSAP) has been identified as a mitochondrial proapoptotic protein. However, the mechanism by which PSAP induces apoptosis remains unknown. To this end, we have established an inducible expression system. Using this system, we have examined the roles of B-cell lymphoma 2 (Bcl-2) family proteins, cytochrome c, Smac (Smac/Diablo, second mitochondria-derived activator of caspases/direct IAP binding protein with low PI), and Apaf-1 (apoptotic protease-activating factor) in PSAP-induced apoptosis. Our results demonstrate that knockdown of Apaf-1 abolished PSAP-induced caspase activation and poly(ADP ribose) polymerase (PARP) cleavage, indicating that the apoptosome formation triggered by cytochrome c is crucial for PSAP-induced apoptosis. Our data also demonstrate that knockdown of Smac abolished PSAP-induced caspase activation and PARP cleavage, indicating that, in addition to Apaf-1 or apoptosome formation, Smac is also essential for PSAP-induced apoptosis. However, interestingly, our data demonstrate that overexpression of Bcl-2 and Bcl-xL did not protect cells from PSAP-induced apoptosis, and that knockdown of Bid, Bax, and Bak had no effect on PSAP-induced cytochrome c and Smac release, indicating that PSAP-induced apoptosis is not regulated by Bcl-2 family proteins. These results strongly suggest that PSAP evokes mitochondrial apoptotic cascades via a novel mechanism that is not regulated by Bcl-2 family proteins, but that both the formation of cytochrome c-Apaf-1 apoptosome and the presence of Smac are absolutely required for PSAP-induced apoptosis.  相似文献   
79.
This study determined the effects of dietary branched-chain amino acids (AA) (BCAA) on growth performance, expression of jejunal AA and peptide transporters, and the colonic microflora of weanling piglets fed a low-protein (LP) diet. One hundred and eight Large White × Landrace × Duroc piglets (weaned at 28 days of age) were fed a normal protein diet (NP, 20.9 % crude protein), an LP diet (LP, 17.1 % crude protein), or an LP diet supplemented with BCAA (LP + BCAA, 17.9 % crude protein) for 14 days. Dietary protein restriction reduced piglet growth performance and small-intestinal villous height, which were restored by BCAA supplementation to the LP diet to values for the NP diet. Serum concentrations of BCAA were reduced in piglets fed the LP diet while those in piglets fed the LP + BCAA diet were similar to values for the NP group. mRNA levels for Na+-neutral AA exchanger-2, cationic AA transporter-1, b0,+ AA transporter, and 4F2 heavy chain were more abundant in piglets fed the LP + BCAA diet than the LP diet. However, mRNA and protein levels for peptide transporter-1 were lower in piglets fed the LP + BCAA diet as compared to the LP diet. The colonic microflora did not differ among the three groups of pigs. In conclusion, growth performance, intestinal development, and intestinal expression of AA transporters in weanling piglets are enhanced by BCAA supplementation to LP diets. Our findings provide a new molecular basis for further understanding of BCAA as functional AA in animal nutrition.  相似文献   
80.
The 2-DE/MS-based proteomics approach was used to investigate the differences of porcine skeletal muscle, and ATP5B was identified as one differential expression protein. In the present study, ATP5B gene was further cloned by RT-PCR, the sequence was analyzed using the bioinformatics method, and the mRNA expression was detected by qRT-PCR. Sequence analysis showed that the porcine ATP5B gene contains an ORF encoding 528-amino-acid residues with 49 and 166 nucleotides in the 5′ and 3′ UTRs, respectively. The mRNA of ATP5B was widely expressed in all 14 tissues tested, but especially highly expressed in parorchis and fat. The expression pattern of ATP5B was similar in Large White and Meishan breeds, showing that the expression was upregulated by 3 days after birth and downregulated during postnatal development of skeletal muscle. Comparing the two breeds, the mRNA abundance of ATP5B in Large White was more highly expressed than in Meishan at all developmental stages (P < 0.05). Moreover, a synonymous mutation, G75A in exon 8, was identified and association analysis with the traits of meat quality showed that it was significantly associated with the RLF, FMP, IFR, IMF, and IMW (P < 0.05). These results suggested that ATP5B probably plays a key role in porcine skeletal muscle development and may provide further insight into the molecular mechanisms responsible for breed-specific differences in meat quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号